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Abstract

JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear
mechanics problems. A set of continuum equations describes the nonlinear mechanics involving
large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations.
The method is implemented in a two-dimensional setting with various methods for accelerating
convergence.  Sliding interface logic is also implemented. A four-node Lagrangian uniform
strain element is used with hourglass stiffness to control the zero-energy modes. This report
documents the elastic and isothermal elastic/plastic material model. Other material models,
documented elsewhere, are also available. The program is vectorized for efficient performance
on Cray computers. Sample problems described are the bending of a thin beam, the rotation
of a unit cube, and the pressurization and thermal loading of a hollow sphere.
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1. Introduction

1.1 Perspective

JAC2D is a finite element computer program for solving large deformation, tem-
perature-dependent quasi-static mechanics problems in two dimensions. A nonlinear
conjugate gradient technique (CG technique) is used to solve the governing nonlinear
equations. This report describes the material model for elastic and isothermal elastic-
plastic behavior with combined kinematic and isotropic hardening. Other material mod-
els, documented elsewhere, are also available. A four-node Lagrangian uniform strain
element is employed with hourglass stiffness to control the zero-energy modes.

JAC2D is very similar to the three-dimensional program JAC3D [1]. The JAC2D and
JAC3D programs are the result of research to develop a reliable solution algorithm for
solving quasi-static problems that executes efficiently on vector-processing computers.
The nonlinear conjugate gradient method selected has proved to be very effective for
solving these problems.

1.2 Background

For the calculation of the nonlinear quasi-static response of solids, there is a need for
efficient and reliable solution methods. In recent years, finite element nonlinear solutions
to static problem have been obtained by using either a modified or unmodified Newton-
Raphson method. Use of these stiffness approaches is troublesome because it is difficult
to decide when to reformulate the stiffness matrix to keep the solution from diverging or
to accelerate the convergence. On the opposite end of the spectrum of solution methods
are indirect iterative methods, which do not involve a stiffness matrix.

The motivation to try indirect iterative solvers comes from several sources. First,
a more robust method than the Newton-Raphson algorithm is needed to solve highly
nonlinear problems involving geometric stiffening due to large deformations, stiffening
and softening due to material response, and sudden changes in stiffness due to contact
surface constraints. Second, there is a need to solve large problems efficiently without a
severe restriction on the number of elements that can be used due to hardware limitations
in storing and retrieving the stiffness matrix from a magnetic disk.

Some of the motivation for trying indirect solution methods comes from observing
the excellent results produced by explicit methods in solving nonlinear transient dynam-
ics problems. These methods have been very efficient in terms of computer resources.
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The data storage and code architecture for dynamics problems are similar to those for in-
direct solution of statics problems. Examples of effective explicit dynamics codes include
HONDO [2], WULFF [3], DYNA2D [4], and DYNA3D [5], and recently, PRONTO2D [6)
and PRONTO3D [7]. The research problem was to apply these concepts to a robust
indirect solution method for nonlinear static problems.

In the early 1960s, indirect solution techniques such as successive overrelaxation,
Gauss-Seidel, and Jacobi methods were tried on linear finite element equations. It was
soon discovered that direct solution procedures (Gaussian elimination, for example) were
much more efficient than indirect techniques if the equations were ordered in an ef-
ficient manner. However, only linear or mildly nonlinear problems were being solved
at that time. Rashid reopened the question of whether to use iterative techniques for
three-dimensional problems. His technique is discussed by Irons [8]. Indirect methods,
1f successful for two- and three-dimensional problems, could substantially reduce stor-
age requirements and input-output operations when compared to the stiffness method.
- Moreover, the code could be highly vectorized, as demonstrated by the explicit dynamics
codes. A reliable iterative method, even if expensive, is superior to a stiffness approach
that does not reliably produce a solution on the first attempt.

After examining and trying various explicit techniques, the CG technique [9, 10, 11]
was selected for solving highly nonlinear solid mechanics problems. These nonlinear ef-
fects include material nonlinearities and geometric nonlinearities due to large rotations,
large strains, and surfaces that slide relative to one another. The CG technique was
selected mainly for its reliability. In particular, convergence for a linear problem is

guaranteed (with an infinite-precision machine) in N steps, where N is the number of
unknowns in the problem. Also, various investigators in the field of linear programming

and optimization were using the CG technique with success on very nonlinear prob-
lems [12, 13, 14]. Nonlinear versions of the CG technique are described by Daniel [15]
and Bartels [16]. Several acceleration techniques for the linear CG methods are dis-
cussed in an article by Fletcher and Reeves [12]. The JAC2D implementation of the CG

technique for solving nonlinear equations is discussed in Section 3.3. '

In this document, the governing equations are formulated in the current configu-
ration of the body, with particular attention to the rotation of the stress tensor. The
formulation is extremely convenient for the CG method because a stiffness matrix need
not be calculated. Variational statements are then presented that allow a finite element
representation of the equations of equilibrium.

1.3 Program Capabilities
The concepts noted above have been incorporated into the structural mechanics

computer program JAC2D and combined with a variety of ancillary capabilities, which
result in a very versatile computer program.
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1.3.1 Standard Geometry and Results File Format

As a member of the Sandia National Laboratories Engineering Analysis Code Access
System (SEACAS) [17], JAC2D benefits from a rich computational analysis environment.
Geometry and mesh information for the analysis is read from a file in the GENESIS for-
mat [18], which can be produced by a number of mesh generators and other preprocessors.
Results are written to a file in the related EXODUS format [19], which is compatible with
a suite of postprocessors and visualization aids.

1.3.2 Element Birth and Death

The program has the capability to add elements (element birth) and/or delete ele-
ments (element death) at selected times in the solution. This capability is an especially
important feature for evaluating the residual stresses developed as a result of various
manufacturing processes. For example, many electronic assemblies are built up through
a cascade of soldering steps. Two parts are joined with high-temperature solder, then
a third part is added with a lower-temperature solder, and so forth. Using the element
birth capability, this manufacturing process can be realistically modeled, allowing new
parts to appear at each step. In the same manner, changes in residual stress as the
result of milling, drilling, or etching can be realistically modeled with the element death
capability. Mining operations also can be modeled using element death.

1.3.3 Material Models

At the present time, several nonlinear material constitutive models are incorpo-
rated in the program; however, only one is described here. The model is an isothermal
elastic/plastic model with combined kinematic and isotropic hardening, and is widely
applicable. For example, this model is used extensively to describe the response of mate-
rials used in electronic assemblies. It has been successfully used to describe the behavior
of ceramics, rigid polymers, solder at low temperature, and a host of other materials.
The other models are documented separately, and more can be easily added. For a given
problem, any or all of the material models which exist in the code can be used.

1.3.4 Initial Stress

Each material may be assigned an initial value for each component of stress in the
reference configuration. The user may also specify a linear variation of stress in the y-
coordinate direction. Initial stresses are typically specified to be in equilibrium with the
initial boundary conditions. As an option, the user may request that the program calcu-
late an initial equilibrium state before the first load step. In this case, two equilibrium
passes are made prior to beginning the load history; the displacements are zeroed out
and the state variables reinitialized after each pass.
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1.3.5 Kinematic Constraints

The geometric boundary conditions allow nodal points to be rigidly fixed in space
and time or to move in a specified time-dependent manner. This capability allows for
realistic modeling of many quasi-static physical processes. For example, in electronics
assemblies, connectors are often required. The mating of a connector pair consists of
press-fitting a contact pin into a housing. The requirements are that the contact force
be sufficiently high to maintain electrical continuity; however, the stresses in the housing
must remain linearly elastic so that the connector can be reliably used over and over.
Time-dependent boundary conditions applied to the pin in conjunction with a contact
surface definition between the pin and housing allow this problem to be modeled easily.

1.3.6 Loads

The program has the capability to apply a variety of mechanical time-dependent
and/or time-constant loads to a model. These loads can be point loads, surface pres-
sures, or body forces (arising from acceleration or electromagnetic fields). With these
definitions, a great variety of mechanical loading applications can be modeled.

1.3.7 Thermal Input

The program has the capability to accept thermal input defining the temperature
history of the structure. The temperature history can be obtained from a separate
thermal analysis computer program or generated with a user-supplied Fortran program.
If the temperature history is uniform throughout the structure, it can be generated within
JAC2D itself. Tracking the temperature history is important for a variety of applications.
For example, residual thermal stresses can develop during the manufacture of electronic
assemblies that are soldered or brazed. The stresses develop because of (1) the difference
in the thermal expansion characteristics of the various materials in the assembly, or
(2) the transient nonuniform temperature history. When the electronic assembly is in
service, the same problem arises as power is applied or removed. In addition to inducing
stresses by themal expansion, temperature variations can cause variations in the material
response parameters.

1.3.8 Contact Surfaces

The program can also model contacting surfaces. The contact surfaces can be fixed,
they can slide without friction, or they can slide with friction. The surfaces can close
or open as the solution dictates. This capability allows many physical processes, such
as connector insertion, to be realistically modeled. The “fixed” contact surface has also
proven useful for grading element size. This allows for parts of the structure to be very
finely modeled to obtain the required resolution. The remainder of the structure, which
is required to obtain the global response, can be roughly modeled. These parts are joined
by one or more fixed contact surfaces.

14



1.3.9 Restart

Finally, a capability to restart the solution is also incorporated. The restart can be
used to change many of the problem parameters, thus allowing realistic physical processes
to be modeled easily. For instance, stresses and deformations are generally developed in
an electronic assembly due to manufacturing processes. Environments encountered dur-
ing use impose additional stresses and deformations on the assembly. With the restart
capability, an analysis of the manufacturing environment can be performed just once.
Various subsequent use environments can then be evaluated by restarting from this so-
lution. The stress and deformation state existing in the restart file should be viewed as
a set of equilibrium initial conditions with which to start a problem.
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2. Governing Equations

This chapter presents continuum mechanics concepts as a basis for development of
the numerical algorithms in the following chapters. Boldface characters denote tensors.
The order of the tensor may be determined from the context of the equation.

2.1 Kinematics

A material point in the reference configuration By with position vector X occupies
position x at time ¢ in the deformed configuration B. This gives rise to the notation
x = x(X,t). The motion from the original configuration to the deformed configuration
shown in Figure 2.1 has a deformation gradient F given by

ox

F=3x

IF| >0 . (2.1)

Applying the polar decomposition theorem to F,

F=VR=RU, (2.2)

.,,

Figure 2.1. Original, Deformed, and Intermediate Configurations of a Body.

Q
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where V and U are the symmetric, positive definite left and right stretch tensors, re-
spectively, and R is a proper orthogonal rotation tensor. Figure 2.1 illustrates the inter-
mediate orientations defined by the two alternate decompositions of F defined by Equa-
tion 2.2. The determination of R follows from the work of Flanagan and Taylor [20].
The incremental algebraic algorithm to determine R is described in Section 4.2.

The velocity of the material point X is written as v = X, where the superposed dot
indicates time differentiation holding the material point fixed. The velocity gradient is
denoted by L and may be expressed as

ov  ovioX . -1
== =FF (2.3)

The velocity gradient can be written in terms of its symmetric (D) and antisymmetric
(W) parts,
L=D+W . (2.4)

Using the right decomposition from Equation 2.2 in Equation 2.3 gives
L=RR +RUU'R? . (2.5)
Dienes [21] denoted the first term on the right side of Equation 2.5 by Q:
. T
2=RR . (2.6)

Both W and  are antisymmetric and represent a rate of rotation (or angular velocity)
about some axes. In general, ! # W. The difference arises when the last term of Equa-
tion 2.5 is not symmetric. The symmetric part of UU™" is the unrotated deformation
rate tensor d as defined below (note that both U and U~! are symmetric).

d= %(ﬁU_l +U"'0U)=R7DR . (2.7)

There are two possible cases that can cause rotation of a material line element: rigid
body rotation and shear. Since total shear vanishes along the axes of principal stretch,
the rotation of these axes defines the total rigid body rotation of a material point.

With vector analysis it can be shown that Equation 2.6 represents the rate of rigid
body rotation at a material point (asshown by Dienes). It can also be shown that W
represents the rate of rotation of the principal axes of the rate of deformation D. Since
D and W have no sense of the history of deformation, they are not sufficient to define
the rate of rotation in a finite deformation context.

Line elements in which the rate of shear vanishes rotate solely due to rigid body
rotations. These line elements are along the principal axes of U. A similar observation
is applied below for using Dienes’ expression for calculating §}.

18



Using the left decomposition of Equation 2.2 in Equation 2.3 gives
L=VV  +VQv (2.8)

Postmultiplying by V yields an expression that defines the decomposition of L into V
and

LV=V+VQ . (2.9)

When the dual vector of the above expression is taken, the symmetric A vanishes to yield
a set of three linear equations for the three independent components of 2.

The antisymmetric part of a tensor may be expressed in terms of its dual vector and
the permutation tensor e;;x. Let us define the following dual vectors:

wi = ek (2.10)

and

w; = e,-jkVij . . (2.11)

Using Equations 2.4, 2.10, and 2.11 in Equation 2.9 results in the expression that
Dienes gave for determining £} from W and V:

w=w-=2[V-ItrV] 'z, (2.12)

where
Z; = eijijmDmk . ' (213)

Since ! = W if and only if the product VD is symmetric, then the principal axes of
the deformation rate D coincide with the principal axes of the current stretch V. Clearly,
a pure rotation is a special case of this condition since D, and consequently the z; in
Equation 2.13, vanish. '

2.2 Stress and Strain Rates

The constitutive model architecture is posed in terms of the conventional Cauchy
stress by adopting the approach of Johnson and Bammann [22] and defining a Cauchy
stress in the unrotated configuration. More detail than is presented here is found in
Flanagan and Taylor [20]. The “true” stress in the deformed configuration is denoted by
T. The Cauchy stress in the unrotated configuration is denoted by o. These two stress
measures are related by

c=RTTR . (2.14)

Each material point in the unrotated configuration has its own reference frame,
which rotates in such a way that the deformation in this frame is a pure stretch. Then
T is simply the tensor ¢ in the fixed global reference frame. The conjugate strain rate

19



measures to T and o are D and d, respectively. These strain rates were defined by
Equations 2.4 and 2.7, respectively.

The principal of Material Frame Indifference (or objectivity) stipulates that a con-
stitutive law must be insensitive to a change of reference frame [23). This requires that
only objective quantities may be used in a constitutive law. An objective quantity is one
that transforms in the same manner as the energy conjugate stress and strain rate pair
under a superposed rigid body motion. The fundamental advantage of the unrotated
stress over the true stress is that the material derivative of o is objective, whereas the
material derivative of T is not.

A stress rate, called the Green-Naghdi rate by Johnson and Bammann, can be
derived by transforming the rate of the unrotated Cauchy stress to the fixed global frame
as follows:

§=R6RT=T-QT+TQ . (2.15)

The Green-Naghdi rate is kinematically consistent with the rate of Cauchy stress. This
statement means that & is identical to T in the absence of rigid body rotations.

A distinct advantage of the unrotated reference frame is that all constitutive models
are cast without regard to finite rotations. This greatly simplifies the numerical imple-
mentation of new constitutive models. The rotations of global state variables (e.g., stress
and strain) are dealt with on a global level, which ensures that all constitutive models
are consistent. Internal state variables (e.g., backstress) see no rotations whatsoever.

The drawback to working in the unrotated reference frame is that the rotation tensor
R must be accurately determined. The incremental, algebraic algorithm to accomplish

this task is described in Section 4.2.

2.3 Fundamental Equations

The quasi-static equations of motion for a body are
V-T+pb=0, (2.16)

where p is the weight density per unit volume and b i3 a specific (force per weight) body
force vector.

The solution to Equation 2.16 is sought subject to the boundary conditions
u=f(t)ons,, : (2.17)

where S, represents the portion of the boundary on which kinematic quantities are spe-
cified (displacement and velocity). In addition to satisfying the kinematic boundary
conditions given by Equation 2.17, the traction boundary conditions must be satisfied as

T-n =s(t) on Sr, | (2.18)

.20



where St represents the portion of the boundary on which tractions are specified. The
boundary of the body is given by the union of S, and St, and for a valid mechanics
problem, S, and St have a null intersection.
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3. Numerical Solution Procedure

The solution to the quasi-static problem, described by Equations 2.16, 2.17, and
2.18, is calculated at discrete points in time by obtaining a minimum of a functional
I, which represents the power input to the body. The nonlinear conjugate gradient
method is used to minimize the functional, and the finite element technique is employed
to discretize the problem geometrically. The reader should be familiar with the finite
element method. If not, numerous texts on the method, such as Bathe and Wilson (24],
can be consulted.

3.1 Time Integration Procedure

Equations 2.16, 2.17, and 2.18 describe a quasi-static theory in which velocities are
retained but the time rates of velocities are neglected. Some quasi-static mechanical pro-
cesses depend on real time, such as those involving viscoelastic and creeping materials.
Others, such as those which involve elastic or elastic/plastic materials, proceed indepen-
dently of the amount of time used in the process. In any event, an incremental solution

in time is used to describe the nonlinear process. For the solution increment going from
time t,, to t,41, an interval of time At is used

At = tog1 — tn s

where n is called the time step (or load step) number.

3.2 The Functional or Objective Function

The goal is to obtain a solution at discrete times by finding the minimum of a
nonlinear functional that represents the fundamental equations. We begin in defining
the functional or objective function by writing the power input to the body (which is
zero for the quasi-static problem) as

Pinput=/8iit,'d5+/ pb,"l:t,'dv, (31)
S |4

where S denotes the surface and V is the volume of the body in the deformed configura-
tion. A discussion of the power input to the body can be found in Malvern [25].

Using Equation 2.18, the surface integral in Equation 3.1 can be transformed into

Pinput = / [@:(Tji; + pbi) + Tijiij) dV . (3.2)
Vv
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A functional II is now defined by equating Equations 3.1 and 3.2 as
II= / [’ll,'T,'i,]' + Tjﬂ't,',j] dVv — / Si'(:Li dS =0 . (33)
v s

If the equilibrium Equations 2.16 are substituted for Tj;; in Equation 3.3, the second
term is integrated by parts, and the first variation is taken, the result is

611 = / 51'1,,'(—[)1),' - Tj,',j) dv — / 5u,(§, — S,') dS . (34)
1% St

The Euler equations are the traction boundary conditions (Equations 2.18) and the state-
ment of equilibrium (Equations 2.16). If, in Equation 3.4, the term involving Tj;; is
integrated by parts, the following first variation is obtained:

SI = / 6’&,'(—,0(),') dV + / 511,',]'T,'j dV —/ 6U;5;dS =0 . (35)
v 1 St

The minimum of the functional at a specified time will be found using the nonlinear
conjugate gradient procedure. Equation 3.5 is used to determine the gradient of the
objective function (i.e., the residual forces in the body) at each iteration, and the finite
element method is used to discretize the body. Since é%u; represents an arbitrary virtual
velocity field, Equation 3.5 is rewritten (with the use of the traction boundary condition
Equation 2.18) as a summation of the contributions of force from each finite element to

obtain
R:Z[ / T80, dV — / pb8u; dV — / T,.,.n,-aa,-dA] . (3.6)
e Ve e Se

The summation symbol represents the assembly of element force vectors into a global
nodal force array. It is assumed that the reader understands the details of this assembly.
In general, while iterating towards a solution within a load step, the value of the residual
vector R in Equation 3.6 will not be zero. In fact, convergence is defined by a measure
of how close R is to zero.

3.3 Conjugate Gradient Algorithm

For a quasi-static time step, a trial solution of components of the velocity vector is
substituted into the set of nonlinear Equations 3.6 and the residual vector (the gradient
of the functional IT) is obtained:

R(4) = 6TI(4) . (3.7)

In the indirect iterative solution procedure, a set of velocity components is sought that
will make the residual vector zero or acceptably small. The conjugate gradient method
is used to efficiently obtain directions in which to search for the velocity solution. Using
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a form of the conjugate gradient method obtained by combining a linear preconditioned
version [11] and a nonlinear version [16], the iterative process is started by assuming a
vector of velocity components at the nodes of the finite element mesh, u;, with 7 denoting
the iteration number. The residual vector, the gradient of the functional, becomes

R; = R(1;) . (3.8)

A preconditioning matrix M (the diagonal of the linear stiffness matrix) is introduced to
define a generalized gradient vector Z as follows:

M.Z; =R, . (3.9)

The conditioning is helpful when the body contains materials of differing stiffness or
elements of widely varying sizes.

If ;j = 0, the initial search direction is the negative of the gradient, the steepest
descent direction Fy:

Po=—-Zy=-M'R, . (3.10)
Subsequently, for 7 > 0, search directions that are conjugate to the previous direction
are chosen as follows:
Pj=—Z;j+ f;iPj, (3.11)
where J3; has the value
g = Z]TM,,(Zj — Z;-1)
‘ 7T ZE M. Z;,
Equation 3.12 is a generalization of a method known as the Polak-Ribiére algorithm, as

discussed by Powell [14]. The variables u are then updated by searching for the least
value of II(%) from « along the direction P;. Therefore

(3.12)

’l.tj+1 = 'L.I,j + aJ-PJ- 3 (313)

where «; is the value that minimizes the function of one variable. (The process of finding
a; is known also as a line search.) Therefore,

R(aj) = 51—[(’113' + Ole]') . (3.14)

If the residual R is not acceptably small after calculating Equation 3.13, another iteration
is begun. Efficient use of the conjugate gradient method greatly depends upon the cost
of the line search (calculating ).

3.4 Gradient Calculations

The cost of solving problems with the conjugate gradient method is dominated by the
cost of gradient calculations. There are two places in the conjugate gradient procedure
where gradient calculations are needed. The first occurs in computing Equation 3.8,
the residual force vector, for each iteration. The second set of gradient calculations is
required when performing the line search represented by Equation 3.14.
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3.4.1 Residual Force

The calculation of the residual force vector or gradient of the objective function,
Equation 3.6, is accomplished by calculating contributions of force from several sources.
Forces are caused by the state of internal stress, artificial forces to stabilize singular
modes of elements (hourglass modes), external applied tractions, internal body forces,
and externally applied point loads. The specific method of calculating these forces is
described in Chapter 4.

3.4.2 Line Search

It is necessary to find a value of «; that will minimize Equation 3.14. Equation 3.14 is
nonlinear in ¢, and it is often solved iteratively for a; using Newton’s method. However,
if the problem is highly nonlinear, Newton’s method can take many iterations. This
requires many residual calculations which will dominate the cost of an analysis. Following
Bartels and Daniel [16], the minimization solution can effectively be approximated by
one step of Newton’s method starting with o; = 0. The Newton process will result in
the following expression for a;:

ZJ‘TMnZJ-
a; = T
P Rp;

The term Rp, represents a residual calculation with the P; vector substituted for the
velocity vector. The material constitutive model is required to supply a secant modulus
array for use in calculating Rp;. If the material model cannot supply a secant modulus,
then it is approximated using the elastic moduli of the material. The use of the secant
modulus and a single step of Newton’s method to perform the line search has proven to be
very economical when the material responds according to the elastic/plastic constitutive
law. If the problem is linear, both geometrically and in material response, then a single
step of Newton’s method performs an exact line search for a;.

(3.15)

3.5 Restarting the Algorithm

The algorithm described in Section 3.3 draws its strength from finding new search
directions that are orthogonal (or conjugate) to those already taken. In some highly
nonlinear problems, however, this can become a drawback.

The problem comes when the nonlinear functional §II, which depends on u as well as
on u, has changed enough from g to %, or when roundoff error or other approximations
have accumulated to the point that the solution that minimizes Equation 3.8 may have
substantial components in directions that have already been searched. This becomes
apparent when no further reduction in the size of the residual is obtained even after a
great many iterations, or when the residuals begin growing very large (“blowing up”). In
such cases one must start the algorithm over again using a new (perhaps closer) initial
guess.
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In such cases, the program can pick a new initial guess “on the fly,” selecting as its
new guess the vector ;. which has produced the smallest residual R;,,, so far in the

current load step. Three parameters governlng this strategy may be adjusted using the
following input record:

CGRESET LIMITS
itstrt, itrset, tolfac

First, the new guess u; , must differ enough from the original guess uy that it will
produce better results. The first parameter, itstrt, specifies how many iterations to wait
before looking for a minimum residual (i.e., it is required that ju,, > itstrt). The default
value is 1% of the number of degrees of freedom: for a 1000-node problem, itstrt would

default to 20.

The next problem is to decide when to give up on the current CG iteration series
and try a new guess. Currently two situations are targeted: (1) many iterations with
no further reduction in residual size, and (2) a large increase in residual size, indicating
divergence. The second CGRESET LIMITS parameter, itrset, specifies the number of
iterations to allow between finding a minimum and restarting the CG algorithm. The
default value of itrset is half the number of degrees of freedom. The third parameter,
tolfac, defines how much growth in the residual norm indicates divergence. Its default is
1000, meaning that if the norm of the residual grows three orders of magnitude from its
minimum value so far, the algorithm is restarted. Both these defaults are intentionally
loose so that the restart logic will provide a safety net without interfering with a properly-
functioning CG solution.

In the extreme, setting itstrt to 0 and itrset to 1 results in restarting the CG algorithm
at every iteration. This reduces the iteration scheme to the steepest descent method,
always moving the solution in the direction of the current residual. Convergence of
the steepest descent method is often much slower than that of the conjugate gradient
method. The CG algorithm needs a long “leash” to function properly; if the CGRESET
LIMITS are set too tightly, the convergence rate will suffer accordingly, approaching that
of the steepest descent method. For a problem that is not converging very well, watching
the progress of the iterations with ITERATION PRINT turned on should indicate what
CGRESET LIMITS may be most helpful. Reducing the size of the load step and/or
adjusting the TRIAL VELOCITY FACTOR may be beneficial as well.

3.6 Convergence

Global convergence at the end of a time step is defined as having taken place when
any of the following inequalities is satisfied:

IR
< TOLR 3.16
A (3.16)

I|R;|| < RESIDF , (3.17)
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or
el = Heejll
| | ;1]
| - || denotes the L, norm of a vector. In Equation 3.16, F,, is a vector containing the
applied tractions, body forces (gravity forces), thermal forces, and the reactions at nodes
where nonzero displacement boundary conditions are applied. Equation 3.17 provides a
convergence check for situations where the applied loads are small or nonexistent (i.e.,
when unloading to a zero load). Equation 3.18 is used to measure the change in the
velocity vector due to one conjugate gradient iteration. Its main purpose is to stop the
solution attempt if little progress is being made towards a solution. The velocity conver-
gence criterion should not be relied upon as a statement that the problem is at a state
close to equilibrium. However, Equations 3.16 and 3.17 are good measures of how close
the problem is to a state of equilibrium. The program will terminate iterations for the
load step if any of these conditions is satisfied. The default tolerances for Equations 3.16
and 3.18 are 1.0 x 1072 and 1.0 x 107!2, respectively, whereas RESIDF in Equation 3.17
defaults to zero.

< TOLU . (3.18)

If none of the above conditions is satisfied within the user-supplied MAXIMUM IT-
ERATIONS, the program will first go back to the iterate %;_, that produced the smallest
residual during the load step iterations. If the relative size of the corresponding residual
R;_. is less than the user-specified MAXIMUM TOLERANCE, then w;_; is accepted and
the program will proceed to the next load step. If not, u;_,, i1s written to the plot file and
the analysis is terminated. The default value for MAXIMUM ITERATIONS is the number
of degrees of freedom, while MAXIMUM TOLERANCE defaults to zero.
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4. Finite Element Calculations

To define an isoparametric finite element, the spatial coordinates z; are related to
the nodal coordinates z;; through the isoparametric shape functions ¢; as follows:

Ty = mil¢l(€a7],<‘) . (41)

In accordance with indicial notation convention, repeated subscripts imply summation
over the range of that subscript. The lowercase subscripts have a range of 2, corresponding
to the spatial coordinate directions. Uppercase subscripts have a range corresponding to
the number of element nodes.

The same shape functions are used to define the element displacement field in terms
of the nodal displacements u;;: '

ui = uidr . (4.2)

Since the same shape functions apply to both spatial coordinates and displacements, their
material derivative (represented by a superposed dot) must vanish. Hence, the velocity
field may be given by

U = U Pr . (4.3)
The velocity gradient tensor L is defined in terms of nodal velocities as
L,']' = '&,‘Y]' = ‘l't,'1¢11j . (4.4)

By convention, a comma preceding a lowercase subscript denotes differentiation with
respect to the spatial coordinates (e.g., %; ; denotes 0u;/0x;).

4.1 Four-Node Uniform Strain Element

The element library in JAC2D currently contains only a single continuum element,
the four-node isoparametric element, which is widely used in computational mechanics.
Determining optimal integration schemes for this element, however, presents a difficult
dilemma. A one-point integration of the element under-integrates the element, result-
ing in a rank deficiency that manifests itself in spurious zero-energy modes, commonly
referred to as hourglass modes. A two-by-two integration of the element over-integrates
the element and can lead to serious problems of element locking in fully-plastic and
incompressible problems. The four-point integration also carries a significant computa-
tional cost penalty compared to the one-point rule. In JAC2D, a one-point integration
of the element is used and implemented with an hourglass control scheme to eliminate
the spurious modes. The development presented below follows directly from Flanagan

and Belytschko [26].
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The two-dimensional isoparametric shape functions map the unit square in §;-space
[6; is written explicitly as (£,7)] to a general quadrilateral in z;-space, as shown in
Figure 4.1. The unit square is centered at the origin in {;-space so that the shape
functions may be conveniently expanded in terms of an orthogonal set of base vectors,

given in Table 4.1, as follows:
| 1
¢1=7

Note that the notation follows that used by Flanagan and Belytschko. In their work, the
¢; range from —1 to .

1 1
Yr+ 551\11 + 5771\21 + &l . (4.5)

Table 4.1. Orthogonal Set of Base Vectors

Node & n Xp Ay Ay Iy
1 -5 =5 1 -1 -1 1
2 b5 =5 1 1 -1 -1
3 5 5 1 1 1 1
4 -5 5 1 -1 1 -1

The above vectors represent the displacement modes of a unit square. The first vec-
tor, X1, accounts for rigid body translation. ¥ is called the summation vector because it
may be employed in indicial notation to represent the algebraic sum of vector components.

i~
e

4 ) r -1 7 7 \ 7
! 1 ¢ | / ’ \ /
| { ! y f M )
l | | / / \

) /
1 J L J L / ' A

> Ay Ag I

Figure 4.1. Mode Shapes for the Four-Node Constant Strain Quadrilateral Element.
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The linear base vectors denoted by A;; may be readily combined to define the uniform
normal strains and shear strain in the element. The A;; are referred to as the volumetric
base vectors because they are the only base vectors which appear in the element area
expression, as illustrated below.

The last vector, denoted by I';, gives rise to linear strain modes that are neglected
in the single-point integration. This vector defines the hourglass patterns for a unit
square. Hence, I'; is referred to as the hourglass base vector. The displacement modes
represented by the vectors in Table 4.1 are also shown in Figure 4.1.

4.1.1 Plane Strain Case

Under plane strain assumptions, the thickness of the body is considered uniform
and arbitrary, and therefore can be eliminated from consideration. Equation 3.6 then

becomes
R:Z[ / T;;6u; ; dA — / pbi6i; dA — / Tijnjaaidl] . (4.6)
. A Ae Se

The first integral in this equation is used to define the element internal force vector f;;
as

Sititfir = / Ty6is; dA . (4.7)
The second and third integrals define the external force vector.

One-point integration is performed by neglecting the nonlinear portion of the element
velocity field, thereby considering a state of uniform strain and stress. The preceding
expression is approximated by

fa=T; [ ¢1,dA, (4.8)
A :

where the arbitrary virtual velocities are eliminated, and T}; represents the assumed..
uniform stress field, which will be referred to as the mean stress tensor. Neglecting the
nonlinear velocities results in the mean stresses depending only on the mean strains.
Mean kinematic quantities are defined by integrating over the element as follows:

. 1
ﬁ,'yj = Z/ ’l.l,,',j dA . (49)

The discrete gradient operator is defined as

By= [ ¢1,dA . (4.10)
Ae .

The mean velocity gradient, applying Equation 4.4, is given by

. 1.
Uj; = ZuquI . (411)
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Combining Equations 4.8 and 4.10, the nodal forces are expressed by
fir=T;Bj1 . (4.12)

Computing nodal forces with this integration scheme requires evaluation of the gra-
dient operator and the element volume. These two tasks are linked, as

Z;; = 6,']' ; (413)

where §;; is the Kroneker delta. Equations 4.1, 4.-10, and 4.13 yield
IE,‘IBJ'I = / (.’D,'[¢1),j dA = A(S,'j . (414)
A

Consequently, the gradient operator may be expressed by

0A '

To integrate the element volume in closed form, the Jacobian of the isoparametric
transformation is used to transform the integral in zy-space to an integral over the unit

square:
+1 +3
A=/ dA=/ / Jdnd¢, (4.16)
a ey
where P 929 '
z Oy z dy
== _ == 4.17
0kon Onot ( )
Therefore, Equation 4.16 can be written as
A= .'L'[y_]C[J 3 (4.18)
where )
Y2 (Y3 0¢,04s 94104y
CIJ—/_% L, O By T dnd¢ . (4.19)

Observe that the coefficient array Cjs is identical for all quadrilaterals. Further-
more, in light of Equation 4.5, the above integration involves at most bilinear functions.
Therefore, only the constant term does not vanish, and the integration yields

Crs = —(Airbas — AgrAyy) (4.20)

e R

Note that Cry is antisymmetric:
4 Cry=-Cu . (4.21)
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Evaluating Equation 4.20 yields the following explicit representation for Cpj:

1 0 -1
1| -1 1 0

Cry = 5 0 -1 0 1 (4.22)
1 0 -1 0

Substituting the above result into Equation 4.18, the familiar expression for the area
of a quadrilateral is obtained:

A= 3 [(ms— =)~ v2) + (22— 25— )] - (4.23)

Using this result in Equation 4.15, the B-matrix may be expressed as

il = Yo | = 1 (y2—ya) (ya—v1) (ya—y2) (y1—y3)
Bl =Cu [ —zJ ] 2 [ (za—z2) (z1—23) (Z2—24) (TZ3—21) | (4.24)

The mean stress approach gives the same results in two dimensions as the one-point
quadrature rule for the quadrilateral, since the Jacobian is at most bilinear.

Hourglass Control Algorithm

The mean stress-strain formulation of the uniform strain element considers only a
fully linear velocity field. The remaining portion of the nodal velocity field is the so-called
hourglass field. Excitation of these modes may lead to severe, unresisted mesh distortion.
The hourglass control algorithm described here is taken directly from Flanagan and
Belytschko [26]. The method isolates the hourglass modes so that they may be treated
independently of the rigid body and uniform strain modes.

A fully linear velocity field for the quadrilateral can be described by
u?n =u; + '!Ll,',j(:bj - J_Ij) . (4.25)
The mean coordinates Z; correspond to the center of the element and are defined as

1
:I_Z,' = Z.’IZ,’[Z[ . (426)

The mean translational velocity is similarly defined by

. 1
U; = Z’duzl . (4.27)

The linear portion of the nodal velocity field may be expressed by specializing Equa-
tion 4.25 to the nodes as follows:

uix[n = ’LLI,,'EI -I- 'lLl,,',j(II}jI —_ .’fle[) , (4;28)
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where ¥; is used to maintain consistent index notation and indicates that u; and Z;
are independent of position within the element. From Equations 4.11 and 4.28 and the
orthogonality of the base vectors, it follows that

ur Xy = WYy = 4u; (4.29)
and
W1 Bj; = Wir By = Aty . (4.30)

The hourglass field uf‘lg may now be defined by removing the linear portion of the nodal
velocity field:

u'E = gy — b (4.31)
Equations 4.29 through 4.31 prove that ¥; and Bj are orthogonal to the hourglass field:
WES; =0 (4.32)

and
WEB;r =0 . (4.33)

Furthermore, the B-matrix is a linear combination of the volumetric base vectors Az, so
Equation 4.33 can be written as

WA =0 . (4.34)
Equations 4.32 and 4.34 show that the hourglass field is orthogonal to all the base vectors
in Table 4.1 except the hourglass base vector. Therefore, uf‘,g is proportional to the

hourglass base vector as follows:

1
uls = 54l - (4.35)

The hourglass nodal velocity is represented by ¢; above (the leading constant is added to
normalize I'y). The hourglass shape vector 7 is defined such that

1
i = I - (4.36)

By substituting Equations 4.28, 4.31, and 4.36 into 4.35, multiplying by I';, and using
the orthogonality of the base vectors, the following is obtained:

u; Ty — x0T = Wiy - (4.37)

With the definition of the mean velocity gradient, Equation 4.11, the nodal velocities
above are eliminated. As a result, 77 is computed from the following expression:

1
71 =Tr—=Bazuls . (4.38)
The above expression is simple enough to be written explicitly as follows:

z2(ys — ya) + z3(ya — y2) + z4(y2 — ys)
L z3(y1 — Ya) + za(ya — 1) + T1(ys — Y3 (4.39)

_ ) )
=34 za(yr — y2) + v1(y2 — y4) + 22(ya — 1)
z1(ys — y2) + z2(v1 — y3) + z3(y2 — v1)
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The difference between the hourglass base vector I'; and the hourglass shape vector
vr 1s very important. They are identical if and only if the quadrilateral is a rectangle.
For a general shape, I'; is orthogonal to B;;, while 4 is orthogonal to the linear velocity
field 4. While I'; defines the hourglass pattern, 4; is necessary to accurately detect
hourglassing.

4.1.2 Axisymmetric Case

As with the plane strain quadrilateral, the uniform strain scheme for the axisymmet-
ric quad hinges on integration of the element volume. In what follows, the rz-coordinates
represent a cylindrical system as opposed to the zy plane system. Under axisymmetric
assumptions, the thickness of the body varies directly with distance from the axis of
symmetry. Considering a unit-radian wedge, Equation 3.6 becomes

R = Z [/4 T,'j(S’l:L,',J'T dA —L pb.,'(S’l:l,,,"I‘ dA — /; T,'jTLj(SiL,’T dl] . (440)

Using single-point integration, the first integral approximates the element internal force
vector by

f,‘] = T,'j ¢ij’!‘ dA s (441)

A

where the arbitrary virtual velocities have been eliminated, and Tij is again the mean
stress tensor. Neglecting the nonlinear velocities results in the mean stresses depending
only on the mean strains. Mean kinematic quantities are defined by integrating over the
element as follows:

- 1 ) 1. ,
Uy = V /‘;e Uy,5T dA = V’ui[ /Ac ¢[,j7‘ dA . (442)

and . .
% = q7ln 5 ¢rdA . (4.43)

In this case, the discrete gradient operator is defined as

B;; = drirdA | (4.44)
A
and a centroid operator H;; is defined as

Hy= | ¢1dA . (4.45)
A,

Using this definition of the discrete gradient operator, the nodal forces and mean
velocity gradient may be written as they are in the planar case:

fii = Ti;Bj1 (4.46)
. 1. ‘
u;; = Zu,'IBjI . (4.47)
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In addition,

= i Hr - (4.48)

Uy 1
T

The above strain rates satisfy the important identity

Vedg+=, (4.49)

y _

so that the correct volume change is obtained when the uniform velocity gradient com-
ponents are used.

The element volume may be calculated by

V= / rdA =rirjzxCrik , (4.50)
A
where
[t (YR 04,06k 045 Ok

The shape functions in Table 4.1 apply to the axisymmetric case as well as the planar
case. Equation 4.51 is then evaluated to yield

1
CIJK = EEI(AUAH( - AzJAlK)
» 1
+ 4—8A11(A1JFK —T'yhik) (4.52)

1
+ EAzl(FJAZK‘AzJFK) .

By taking the material derivative of Equation 4.50 and combining it with Equations 4.47
through 4.49, the following expressions are obtained for computing the gradient and
centroid operators:

B,' = [ 2 ] TKCKIJ . (453)
—ry
Hy = rjzxCpk - (4.54)

The following two identities, which are crucial to the development of the hourglass control
algorithm that follows, are extracted from Equations 4.53, 4.54, and 4.51.

By%; = 0 (4.55)
HS = A . (4.56)
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Hourglass Control Algorithm

The linear velocity field for the axisymmetric element can be expressed with the
following sequence of equations, analogous to Equations 4.25 through 4.28:

uim = ’LLt,' + zi,-,j(rj - 'f‘j) (457)
1

i o= ‘A""iIHI (4.58)

U = -};ﬂul‘h ' (4.59)

U?In = ’lLl,,'E] + ‘li,'yj(?‘j] — ij]) . : (4.60)

By applying Equations 4.55 and 4.56, it can be shown that

wrHy = wrHp = A (4.61)

wrB;1 = u¥PB;= Vi, (4.62)

which verify that the uniform strain operators correctly integrate a linear velocity field.
Furthermore,

Uy =0, | (4.63)
where

1
v =Tr=Baruls, (4.64)

which shows that the hourglass operator is orthogonal to the linear field, as required.

4.1.3 Determination of Effective Shear Modulus for Hourglass Control

For the purpose of controlling the hourglass modes, a generalized force Q; is defined
conjugate to ¢;, so that the rate of work is

. 1 .
Ui fiE = EQM (4.65)

for arbitrary w,;;. Using Equation 4.36, it follows that the contribution of the hourglass
resistance to the nodal forces is given by

1

fif = §Qi’71 . (4.66)
The nodal antihourglass force has the shape of v; rather than I';. This fact is essential,
because the antihourglass force should be orthogonal to the linear velocity field to prevent

energy from being transferred to or from the rigid body and uniform strain modes by the
antihourglassing scheme.

In JAC2D, an artificial stiffness resistance is used. In terms of the user-specifiable
parameter &, the resistance is given by

.k _.B:B.
Qi = 552 ]fq Lgi (4.67)
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The stiffness expression must be integrated, which requires that this resistance be stored
in a global array. The term f is an effective shear modulus. JAC2D uses the follow-
ing algorithm, similar to that found in PRONTO2D [6], for adaptively determining an
effective shear modulus of the material.

The constitutive response over a time step can be cast as a hypoelastic relationship
and approximated as isotropic. This defines an effective shear modulus & in terms of the
hypoelastic deviatoric stress and strain increments as follows:

si; = 2ies; At | (4.68)
where ~ )
sij = Aoy — gAUkk&j (4.69)
and ) :
eij = dij — gdkk&'j - (4.70)

Taking the inner product of Equation 4.68 with the deviatoric strain rate and solving for
the effective shear modulus 2j gives

Sij€ij

2% = (4.71)

emnemnAt .
If the strain increments are insignificant, Equation 4.71 will not yield numerically mean-
ingful results. In this circumstance, JAC2D sets the effective shear modulus to an initial
estimate, pg. The effective modulus is not allowed to be greater than ug or less than
Ho X 1072,

4.2 Finite Rotation Algorithm

As stated in Section 2.2, one of the fundamental numerical challenges in the devel-
opment of an accurate algorithm for finite rotations was the determination of R, the
rotation tensor defined by the polar decomposition of the deformation gradient F. An
incremental algorithm is used for reasons of computational efficiency and numerical accu-
racy. This algorithm is identical to that used in PRONTO2D by Taylor and Flanagan [6].
The validity of the unrotated reference frame is based on the orthogonal transformation
given by Equation 2.14. Therefore, the crux of integrating Equation 2.6 for R is to main-
tain the orthogonality of R. If one integrates R = QR via a forward difference scheme,
the orthogonality of R degenerates rapidly no matter how fine the time increments. The
algorithm of Hughes and Winget [27] is adopted for integrating incremental rotations as
follows.

A rigid body rotation over a time increment At may be represented by

X+ At = Qarx: , (4-72)
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where Q4 is a proper orthogonal tensor with the same rate of rotation as R, given by
Equation 2.6. The total rotation R is updated via the highly accurate expression below:

Rt+At = QAth . ) (473)

For a constant rate of rotation, the midpoint velocity and the midpoint coordinates
are related by

1 1
_(xt+At - Xt) = —Q(xt-}-At + Xt) . . (4.74)
At 2
Combining Equations 4.72 and 4.74 yields
At '
(QAt - I)Xt = —2-Q(QAt + I)Xt . (475)

Since x; is arbitrary in Equation 4.75, it may be eliminated. Solving for Qa¢,
-1
t .
Qa; = (1 . %Q) (I+ %—9) . (4.76)

The accuracy of this integration scheme depends upon the accuracy of the midpoint
relationship of Equation 4.74. The rate of rotation must not vary significantly over the
time increment. Furthermore, Hughes and Winget [27] showed that the conditioning of
Equation 4.76 degenerates as JAt grows.

The complete numerical algorithm for a single time step is shown in Table 4.2. This
algorithm requires that the tensors V and R be stored in memory for each element.

Table 4.2. Finite Rotation Algorithm

1. Calculate D and W .
2. Compute Z; = eijijmDmk
w=w—2[V-1ItrV]-lz
Qij = Jeijkwk
Solve X- A0 Reyas = (I+ 4HQ)R,
Calculate V =(D+ W)V —-VQ
Update Viar =V + AtV
Compute d =R7DR
Integrate o = f(d, o)
Compute T = RoRT

P NS ok w
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5. Constitutive Models

The JAC2D program is written in modular form so that different material models
can be added in the future. At the present time there are seven continuum material
models, although the isothermal elastic/plastic model is the only continuum model de-
scribed here. Since each model is in some sense an independent module, each may be
separately documented. Verification problems similar to those given in Chapter 8 should
be included in the documentation. The input instructions given in Appendix A contain
documentation references for the other models. Instructions for adding a new material
model are given in Appendix C.

The function f in Step 7 of Table 4.2 represents a stress-strain relationship. The
main assumption is that the strain rate is constant from time ¢,_, to ¢,. During each
conjugate gradient iteration the latest values of the kinematic quantities are used to
update the stress. All material models are written in terms of the unrotated Cauchy
stress 0 and the deformation rate d in the unrotated configuration.

When calculating linear elastic material response, Hooke’s law is used. In a rate
form, this is written as ‘
&= Mtrd)§ +2ud , (5.1)

where A and p are the elastic Lamé material constants.

5.1 Elastic/Plastic Material with Combined Hardening

The elastic/plastic model is based on a standard von Mises-type yield condition
and uses combined kinematic and isotropic hardening. It behaves elastically if no yield
stress is input. A very thorough description of this model is found in the PRONTO2D
manual [6]. The description is repeated here for completeness.

5.1.1 Basic Definitions and Assumptions

Some definitions and assumptions are outlined here. In Figure 5.1, which geomet-
rically depicts the yield surface in deviatoric stress space, the backstress (the center of
the yield surface) is defined by the tensor a. If o is the current value of the stress, the
deviatoric part of the current stress is

S=o—ltros . (5.2)

The stress difference is then measured by subtracting the backstress from the deviatoric
stress by
E=S—-—a . (5.3)
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Figure 5.1. Yield Surface in Deviatoric Stress Space.

The magnitude of the deviatoric stress difference R is defined by

R=¢ll = v¢: €, (5.4)

where the inner product of second order tensors is S: 8 = S;;5;;. Note that if the
backstress is zero (isotropic hardening case) the stress difference is equal to the deviatoric
part of the current stress S.

The von Mises yield surface is defined as

flo)=3€:£=+", (5-5)

g=1/26:¢ . (5.6)

Since R is the magnitude of the deviatoric stress tensor when a = 0, it follows that

R =2 = \/g& . (5-7)

The normal to the yield surface can be determined from Equation 5.5:

_ 8f/os _ €
Q=195/001 " F (5:8)
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It is assumed that the strain rate can be decomposed into elastic and plastic parts
by an additive decomposition,

d=d"+d”, (5.9)
and that the plastic part of the strain rate is given by a normality condition,
d” =1Q, (5.10)

where the scalar multiplier v is to be determined.

A scalar measure of equivalent plastic strain rate is defined by
@ = \/2de! . dP! (5.11)

which is chosen such that _ :
g =o:d" . (5.12)

The stress rate is assumed to be purely due to the elastic part of the strain rate and
is expressed in terms of Hooke’s law by '

6 = A(trd®)é + 2ud®! (5.13)
where A and g are the Lamé constants for the material.

In what follows, the theory of isotropic hardening, kinematic hardening, and com-
bined hardening is described.

5.1.2 Isotropic Hardening

In the isotropic hardening case, the backstress is zero and the stress difference is
equal to the deviatoric stress S. The consistency condition is written by taking the rate
of Equation 5.5:

f(o) = 2xk . (5.14)

The consistency condition requires that the state of stress must remain on the yield
surface at all times. The chain rule and the definition of the normal to the yield surface
given by Equation 5.8 is used to obtain

o Of . |lof .
f(a)—%.a_lla—a“Q.a,_ (5.15)
and from Equations 5.4 and 5.5,
of
5;” =|S||=R . (5.16)
Combining Equations 5.14, 5.15, and 5.186,
%S 6=R . (5.17)
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Note that because S is deviatoric, S:& = S : S, and

. d d (%) _
$:5= 2 (18:9) ‘EE(?) -
Then Equation 5.17 can be written as

R= \/;& = \@H'JP‘ : (5.19)

where H' is the slope of the effective stress versus equivalent plastic strain (¢ vs. &°l).
This may be derived from uniaxial tension test data as shown in Figure 5.2.

56 . (5.18)

Wi

The consistency condition (Equation 5.17) and Equation 5.19 result in
ViHP =Q:is . (5.20)
The trial elastic stress rate 6 is defined by
sr=C:d, (5.21)

where C is the fourth-order tensor of elastic coefficients defined by Equation 5.13. Com-
bining the strain rate decomposition defined in Equation 5.9 with Equations 5.20 and 5.21
yields

\/;E_H'Jpl—_—Q:&“—Q:C:dpl. (5.22)
_ - .
— 1 K
€ i
!
y - _EE '
E-E

Figure 5.2. Conversion of Data From a Uniaxial Tension Test to Equivalent Plastic
Strain Versus von Mises Stress.
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Since Q is deviatoric, C: Q = 24Q and Q: C: Q = 2u. Then using the normality
condition (Equation 5.10), the definition of equivalent plastic strain (Equation 5.11), and
Equation 5.22,

$H'y = Q: 6" —2uy, (5.23)
and since Q is deviatoric (Q : 6" = 2uQ : d), v is determined from Equation 5.23 as
) .
(1+4)

The current normal to the yield surface Q and the total strain rate d are known
quantities. Hence, from Equation 5.24, 4 can be determined and then used in Equa-
tion 5.10 to calculate the plastic part of the strain rate. With the additive strain rate
decomposition and the elastic stress rate of Equations 5.9 and 5.13, this completes the
definition of the rate equations.

The means of integrating the rate equations, subject to the constraint that the stress
must remain on the yield surface, still remains to be explained. How that is accomplished
will be shown in Section 5.1.5.

5.1.3 Kinematic Hardening

For kinematic hardening, the von Mises yield condition is written in terms of the

stress difference §:
f&)=36:€6=x" . (5.25)

It is important to remember that both £ and the back stress & are deviatoric tensors.
The consistency condition for kinematic hardening is written as

fe=o, (5.26)

because the size of the yield surface does not grow with kinematic hardening (£ = 0).
Using the chain rule on Equation 5.26,

0f ¢ _
% =0 (5.27)
and of of
5 = “6_5 Q=RQ . (5.28)
Combining Equations 5.27 and 5.28 and assuming that R # 0,
Q:é=0 (5.29)
or .
Q:(S—a)=0 . (5.30)
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A geometric interpretation of Equation 5.30 is shown in Figure 5.3 in which the backstress
moves in a direction parallel to the normal to the yield surface.

The back stress rate & must now be defined. For the isotropic hardening case
(Equation 5.20),

Q:o=[EH'® = 1H'y . (5.31)

The kinematic hardening condition assumes that

&= ¢d” = p1Q, (5.32)

where ¢ is a material parameter. If ¢ is chosen to be %H' , Equations 5.32 and 5.30
give a result identical to the isotropic hardening case (Equation 5.31). Hence, either
Equation 5.31 or 5.32 gives us a scalar condition on é&. Both of these are assumptions
and must be shown to be reasonable. Experience with material models based on these
assumptions has shown that, in fact, they are reasonable representations of material
behavior.

Using Equation 5.32, Equation 5.9 (the strain rate decomposition), and Equa-
tion 5.13 (the elastic stress rate) in Equation 5.30 (the consistency condition for kinematic
hardening) gives

Q:(6"-C:d")=Q:2H"1Q . (5.33)

Figure 5.3. Geometric Interpretation of the Consistency Condition for Kinematic
Hardening.
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Using the normality condition (d”* = yQ) and the fact that Q is deviatoric, C:Q = 2uQ.
Solving Equation 5.33 for « then gives

: |
v = (_@Q :d, (5.34)

which is the same result as that of the isotropic hardening case.

5.1.4 Combined Isotropic and Kinematic Hardening

For the combined hardening case, a scalar parameter § is defined as ranging from
0 to 1, which determines the relative amount of each type of hardening. Figure 5.4
illustrates the uniaxial response to reversed loading that results from different choices
of f. When # = 0, only kinematic hardening occurs, and when 8 = 1, only isotropic
hardening occurs.

The results derived for the independent hardening cases are multipled by the ap-
propriate fraction for each type of hardening. Equations 5.19 and 5.32 are rewritten
as

R=\[tHd's (5.35)
and
a=2H'dM1-p)=2H'vQ(1-4) . (5.36)
g
/ I*
1
1 .

R
‘\

,
:

Figure 5.4. Effect of the Hardening Parameter $ on Uniaxial Response.
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As before, the consistency condition is

Q:f=R (5.37)

or
Q:($—a) = \/gﬂ'Jplﬂ . (5.38)
Using the elastic stress rate, the additive strain rate decomposition, and the normality

condition, Q: S = Q: (6" — yC: Q). Together with Equations 5.36 and 5.11, this
transforms Equation 5.38 into

Q:6"—1Q:C:Q - 2H(1-A)Q:Q=/2H'A/2(Q):(1Q) . (539)
Solving for 7, .
Y= -(1-|~—f—‘:)Q :d, (5.40)

which is the same result as was obtained for each of the independent cases.

The following is a summary of the governing equations for the combined theory:

¢ = C:(d-d")=6"-211Q (5.41)

L= B3P < iy (5.42)

@ = (1-piH'd (5.43)
pl _ 0 (elastic), if f(¢) < &?

@ = { ~Q (plastic), if f(£) > «? (5.44)

1
LT +%)Q.d (5.45)
- T (5.46)

Q= Torjael T R

5.1.5 Numerical Implementation

The finite element algorithm requires an incremental form of Equations 5.41 through
5.46. Additionally, an algorithm must be used that integrates the incremental equations
subject to the constraint that the stress remains on the yield surface.

The incremental analogs of Equations 5.41 through 5.43 are

Ont1 = Opyy — 20A7Q, (5.47)
and
. Qi1 =0, + (1 — ﬂ)%H'Any , (5.49)
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where A~y represents the product of the time increment and the equivalent plastic strain
rate (Ay = yAt). The subscripts n and n + 1 refer to the beginning-and end of a time
step, respectively.

An incremental analog is needed for the rate forms of the consistency condition given
by Equations 5.14, 5.26, and 5.38. At the end of the time step, the stress state must be
on the yield surface. Hence, the incremental consistency condition is

any1 + Rop1Q =Sy - (5.50)
Equation 5.50 is depicted in Figure 5.5.

Substituting the definitions given by Equations 5.47 through 5.49 into the consis-
tency condition of Equation 5.50,

[ + (1 B)2H'AYQ) + [Ro+ BH'A] Q = S, —2uA9Q . (5.51)
Taking the tensor product of both sides of Equation 5.51 with Q and solving for A«,
1
7= 2” (1 + H’ ” n+1 ” (5'52)

It follows from Equation 5.52 that the plastlc strain increment is proportional to the
magnitude of the excursion of the elastic trial stress past the yield surface (see Figure 5.6).

Figure 5.5. Geometric Interpretation of the Incremental Form of the Consistency
Condition for Combined Hardening.
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TR
n+1

Figure 5.6. Geometric Interpretation of the Radial Return Correction.

Using the result of Equation 5.52 in Equations 5.47 through 5.49 completes the
algorithm. In addition,

AdP! = AvQ (5.53)

= \/2ay . (5.54)

Using Equation 5.52 in Equation 5.47 shows that the final stress is calculated by
returning the elastic trial stress radially to the yield surface at the end of the time step
(hence the name Radial Return Method). Estimates of the accuracy of this method
and other methods for similarly integrating the rate equations are available in Krieg
and Krieg [28] and Schreyer et al. [29]. The radial return correction (the last term in
Equation 5.47) is purely deviatoric.

and

5.1.6 Secant Modulus

A secant modulus is needed to make the conjugate gradient solution a